OKLAHOMASTATE UNIVERSITY
SChOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems
Spring 2009
Final Exam

Choose any four out of five problems.
Please specify which four listed below to be graded:

Name: \qquad

E-Mail Address:

Problem 1:

Find the observable canonical form realization (in minimal order) from a continuous-time system

$$
\frac{d^{4} y(t)}{d t^{4}}+3 t \frac{d^{3} y(t)}{d t^{3}}+6 \frac{d^{2} y(t)}{d t^{2}}-3 \frac{d y(t)}{d t}+\alpha(t) y(t)=\frac{d^{2} u(t)}{d t^{2}}+2 e^{-t} \frac{d u(t)}{d t}+u(t) .
$$

Notice that the gain blocks may be time dependent. Show the state space representation and its corresponding simulation diagram.

Problem 2:

Find a minimal observable canonical form realization (i.e., its simulation diagram and state space representation) for the following MISO system described by

$$
H(s)=\left[\begin{array}{cc}
\frac{2 s+3}{s^{3}+4 s^{2}+5 s+2} & \frac{s^{2}+2 s+2}{s^{4}+3 s^{3}+3 s^{2}+s}
\end{array}\right] .
$$

Problem 3:

Let λ_{i} be an eigenvalue of a matrix A and let v^{i} be the corresponding eigenvector. Let $f(\lambda)=\sum_{k=0}^{l} \alpha_{k} \lambda^{k}$ be a polynomial with real coefficients α_{k}. Show that $f\left(\lambda_{i}\right)$ is an eigenvalue of the matrix function $f(A)=\sum_{k=0}^{l} \alpha_{k} A^{k}$ with the same coefficients α_{k}. Determine the eigenvector corresponding to eigenvalue $f\left(\lambda_{i}\right)$.

Problem 4:

Let

$$
C=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right],
$$

find a matrix B and existing condition, such that $e^{B}=C$. Is it true that for any nonsingular matrix C , there exists a matrix B such that $e^{B}=C$. Justify your answer.

Problem 5:

Verify that $B(t)=\Phi\left(t, t_{0}\right) B_{0} \Phi^{*}\left(t, t_{0}\right)$ is the solution of

$$
\frac{d}{d t} B(t)=A(t) B(t)+B(t) A^{*}(t), \quad \text { with initial condition } B\left(t_{0}\right)=B_{0}
$$

where $\Phi\left(t, t_{0}\right)$ is the state-transition matrix of $\dot{x}(t)=A(t) x(t)$ and $\Phi^{*}\left(t, t_{0}\right)$ is the complex conjugate of $\Phi\left(t, t_{0}\right)$.

